Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants.
نویسندگان
چکیده
There are several approaches being investigated to improve the efficiency of biomass conversion into fermentable sugars, including those that engineer the feedstocks to enhance digestibility. In this study it was evaluated the impact of genotype modifications of three mutants of Eucalyptus globulus L., and of the corresponding wild type on cellulose hydrolyzability before and after ionic liquid (IL) pretreatment. Both untreated and IL-treated samples were chemically characterized and tested for cellulose hydrolizability. Results obtained indicate that genetic modifications altered wood lignin-S/G ratio. This alteration resulted in a different hydrolyzability of cellulose for untreated samples, i.e. high lignin-S/G ratio produced low glucose yield (r=-0.97; P<0.03; n=4), but did not affect glucose yield after IL pretreatment. IL pretreated samples had increased glucose yields compared to that of untreated samples due to the modification of microcrystalline cellulose I to mixtures of more hydrolysable cellulose II and amorphous cellulose, and to the partial removal of the steric impediment, or removal of the lignin "sheath" protecting cellulose, to enzymes. The efficiency of the IL pretreatment used in this study does not appear to be affected by the S/G content of the E. globulus.
منابع مشابه
Effect of Lignin on Enzymatic Saccharification of Hardwood after Green Liquor and Sulfuric Acid Pretreatments
Red maple, sweet gum, trembling aspen, red alder, and Eucalyptus globulus samples were pretreated with dilute sulfuric acid and green liquor before enzymatic saccharification. Substrates showed different levels of delignification and sugar recovery, depending on the applied pretreatments and the syringaldehyde/vanillin ratio (S/V). Three major conclusions were drawn in this research. First, lig...
متن کاملUnderstanding changes in lignin of Panicum virgatum and Eucalyptus globulus as a function of ionic liquid pretreatment.
Ionic liquids (ILs) have shown great potential for the reduction of lignin in biomass after pretreatment. Although dilute acid and base pretreatments have been shown to result in pretreated biomass with substantially different lignin composition, there is scarce information on the composition of lignin of IL pretreated biomass. In this work, temperature dependent compositional changes in lignin...
متن کاملEvaluation of the two-step treatment with ionic liquids and alkali for enhancing enzymatic hydrolysis of Eucalyptus: chemical and anatomical changes
BACKGROUND The biomass recalcitrance resulting from its chemical compositions and physical structures impedes the conversion of biomass into fermentable sugars. Pretreatment is a necessary procedure to increase the cellulase accessibility for bioconversion of lignocelluloses into bioethanol. Alternatively, ionic liquids, a series of promising solvents, provide unique opportunities for pretreati...
متن کاملEffect of pretreatment severity on the cellulose and lignin isolated from Salix using ionoSolv pretreatment.
The ionoSolv pretreatment is a new technique employing protic low-cost ionic liquids and has previously been applied to successfully fractionate switchgrass and the grass Miscanthus giganteus. This study investigates the effect of using the protic ionic liquid solution [N2220][HSO4]80% with two different acid/base ratios (1.02 and 0.98) at 120, 150 and 170 °C on the pretreatment outcome of the ...
متن کاملTransition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis.
Cellulose is inherently resistant to breakdown, and the native crystalline structure (cellulose I) of cellulose is considered to be one of the major factors limiting its potential in terms of cost-competitive lignocellulosic biofuel production. Here we report the impact of ionic liquid pretreatment on the cellulose crystalline structure in different feedstocks, including microcrystalline cellul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioresource technology
دوره 117 شماره
صفحات -
تاریخ انتشار 2012